Next we look at the case \(A^2 = 1 \)

\[
[A, H] = 0
\]

Let \(H \psi = \lambda \psi \)

then \(
\langle \psi | A \psi \rangle = \langle A \psi | A \psi \rangle^* = \langle A \psi | \psi \rangle^* = \langle \psi | A \psi \rangle
\)

\(\Rightarrow \) \(\langle \psi | A \psi \rangle = 0 \)

\(\Rightarrow \psi \) and \(A \psi \) are independent

\(H A \psi = A H \psi = A \lambda \psi = \lambda A \psi \) \((\lambda \in \mathbb{R}) \)

\(\Rightarrow \) all eigenvalues are doubly degenerate

Kramers degeneracy

16.1 Classification of random matrix ensembles

1. No anti-unitary symmetries \(H = H^* \)
 \(p(H) = e^{-\frac{1}{2} \text{Tr} H^2} \)
 Gaussian Unitary Ensemble
 GUE

2. \(A^2 = 1 \) \([A, H] = 1 \Rightarrow H \in \mathbb{R} \), \(\lambda = H^\dagger \)
 \(\Rightarrow H = H^\dagger \)
 \(p(H) = e^{-\frac{1}{2} \text{Tr} H^2} \)
 Gaussian Orthogonal Ensemble
 GOE