\[\langle Q \rangle = e^2 \frac{2}{5} (5 - \frac{5}{2} \alpha) \]

Deformation parameter \(\delta = \frac{5 - \alpha}{\frac{5}{2} (\alpha + \frac{5}{2})} \)

\[Q = e^2 \frac{4}{5} R \left(1 - \delta \right) \]

\(\delta = 0 \) for closed shells.

If \(\delta \) can be as large as 0.7 in between closed shells.

Reduced quadrupole moment \(Q_{\text{red}} = \frac{Q}{2eR} = \frac{e^2}{5} \delta \)

Quadrupole moment in \(\mathbb{R}^3 \) cannot be explained from shell model. In case closed shells have \(\langle Q \rangle = 0 \)

\[\text{31) Collective rotation of nucleus} \]

\[\text{Rotation about symmetry axis does not exist in QM} \]

\[H = \frac{R^2}{2l_c} \text{ moment of inertia about } R \text{-axis} \]

\[R^2 Y_e^m = e (\epsilon_{+1}) + \frac{e}{2} Y_e^m \]

Parity of \(Y_e^m \) : \((2l_c) \)