Problem: the number of states grows factorially:

\[N \text{ single particle states in } m \text{ particles} \]

\[= \text{ we have } \binom{N}{m} \text{ states} \]

eg take \(n = 0, 1, 2, 3 \) then \(N = 40 \)

for \(m = 20 \) we have \(\binom{40}{20} = \frac{8.0.1}{20.120!} \approx 1.4 \times 10^{11} \)