\[L = \left[p, \omega \right] = \left(\frac{\partial L}{\partial \dot{q}} \right) \left(-\frac{\partial L}{\partial \dot{p}} \right) - \left(\frac{\partial L}{\partial q} \right) \left(\frac{\partial L}{\partial \dot{p}} \right) \]

\[= \frac{\partial^2 L}{\partial p \partial \dot{q}} \frac{\partial q}{\partial \dot{p}} = \frac{\partial^2 L}{\partial q \partial \dot{p}} = \begin{cases} 1 & \text{symmetric} \\ x & \text{anti-symmetric} \end{cases} \]

To prove the general case, we first show that Lagrange brackets are invariant under canonical transformations.

Lagrange brackets are defined as

\[\{ \mathbf{u}, \mathbf{v} \} = \sum \left(\frac{\partial q_i}{\partial \dot{q}_j} \frac{\partial q_j}{\partial \dot{q}_i} - \frac{\partial q_i}{\partial \dot{p}_j} \frac{\partial q_j}{\partial \dot{p}_i} \right) \]

We now use the generating function

\[F(q, p) \]

then

\[p_i = \frac{\partial F}{\partial \dot{q}_i}, \quad q_i = \frac{\partial F}{\partial \dot{p}_i} \]

and

\[\frac{\partial q_i}{\partial \dot{p}_j} = \frac{\partial }{\partial \dot{p}_j} \left(\frac{\partial F}{\partial \dot{q}_i} \right) = \frac{\partial F}{\partial \dot{q}_i} \frac{\partial q_j}{\partial \dot{p}_i} + \frac{\partial F}{\partial q_j} \frac{\partial q_j}{\partial \dot{p}_i} \]

\[\text{same for } \frac{\partial q_i}{\partial \dot{p}_j} \]

\[\{ \mathbf{u}, \mathbf{v} \} = \frac{\partial F}{\partial \dot{q}_i} \left(\frac{\partial q_i}{\partial \dot{p}_j} \frac{\partial q_j}{\partial \dot{p}_i} - \frac{\partial q_i}{\partial \dot{q}_j} \frac{\partial q_j}{\partial \dot{p}_i} \right) + \frac{\partial F}{\partial \dot{q}_i} \left(\frac{\partial q_i}{\partial \dot{q}_j} \frac{\partial q_j}{\partial \dot{p}_i} - \frac{\partial q_i}{\partial \dot{p}_j} \frac{\partial q_j}{\partial \dot{p}_i} \right) \]

\[+ \frac{\partial F}{\partial \dot{p}_i} \left(\frac{\partial q_i}{\partial \dot{q}_j} \frac{\partial q_j}{\partial \dot{p}_i} - \frac{\partial q_i}{\partial \dot{p}_j} \frac{\partial q_j}{\partial \dot{p}_i} \right) \]

\[\text{add this (it is 0)} \]