3c Scattering

\[\frac{d\Sigma}{d\Omega} \]

\[\bar{l} \]

\[\bar{l} = \text{number of particles per unit time per unit area per beam} \]

\[d\Sigma = \text{number of particles scattered into } d\Omega \text{ per unit time} \]

Cross section \[\sigma(\theta, y) = \frac{1}{\bar{l}} \frac{d\Sigma}{d\Omega} \]

Total cross-section \[\sigma_{\text{tot}} = \int d\omega \int d\theta \sigma(\theta, y) \]

\[d\omega = \sin\theta \, d\theta \, d\phi \]

We now work out the case of axial symmetry.

Impact parameter \[|\bar{l}| = m \circ \bar{l} \]

Number of particles scattered into \([\theta, \theta + d\theta] \) per unit of incoming flux per unit time is \[\frac{d\Sigma}{d\Omega} = 2\pi \sigma(\theta) \sin\theta \, d\theta \]