point on an elliptic orbit stays on the ellipse which contradicts convergence to \(p_0 \).

\(W_s \) and \(W_u \) cannot self-intersect.

Then two points would be mapped to \(F \) which would violate invertability.

\(W_s \) (or \(W_u \)) of different fixed points cannot intersect.

\(x_1 = Z x_0 \)
\(x_2 = Z x_1 \)
\(x_3 = Z x_2 \)

\(W_s \) and \(W_u \) of the same fixed point intersect.

However, the stable and unstable manifolds can intersect. This leads to the homoclinic tangle.

Homoclinic point \(W_s \) and \(W_u \) of the same fixed point intersect.

Heteroclinic point \(W_s \) and \(W_u \) of different fixed points intersect.

For \(\delta \to 0 \) there are no many intersections. This leads to the homoclinic tangle and the transition to chaos.