\[
= \frac{1}{\alpha} \sum_{n} \left( \Lambda \nu \alpha_{k} \right) \sum_{\left(2 \nu_{k}, \nu_{\alpha} \right)} = \frac{\left\langle \alpha_{k} \right\rangle - \left\langle \nu_{k} \right\rangle}{\nu_{\alpha}} \Sigma_{\left(2 \nu_{k}, \nu_{\alpha} \right)} \Lambda \nu \alpha_{k} \alpha_{k}^{\nu_{\alpha}} \times e^{i \alpha \nu \alpha_{k}}
\]

If the frequencies are commensurate, pt. diverges for some \( m \).

This happens if ratios of the frequencies are rational.

Then we have rational toric; the Poincare section becomes discrete, i.e., we are at a fixed point of a power of the Poincare map.