Poincaré section

System with 2 dof
\(x_1, x_2, \dot{x}_1, \dot{x}_2 \)
Conserved energy \(E \)
\(\Rightarrow \) trajectory in \(3d \) space

Only points with \(\dot{x}_1 > 0 \)

Poincaré section: section of a trajectory with the \(x_2 - \dot{x}_2 \) plane

two conditions on four variables: \(E, x_1 = 0 \)
\(\Rightarrow \) points cover a \(2d \) area

If we have two conserved quantities:
three conditions on four variables \(\Rightarrow \)
points are on a curve

Example h.o. in 2 \(d \)
two conserved quantities
\[
\frac{1}{2} \dot{x}_1^2 + \omega_1^2 x_1^2 = E_1
\]
\[
\frac{1}{2} \dot{x}_2^2 + \omega_2^2 x_2^2 = E_2
\]