Rotational equations

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}_i} \right) - \frac{\partial L}{\partial \phi_i} = \tau_i \]

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}_i} \right) - \frac{\partial L}{\partial \phi_i} = -\frac{\partial \mu}{\partial \phi_i} \]

\[\Rightarrow \frac{d}{dt} M_i = -\frac{\partial \mu}{\partial \phi_i} \]

Change of potential energy by infinitesimal rotation

\[\delta \mu = - \sum_k f_k \delta \phi \]

\[\Rightarrow \delta \mu = - \sum_k f_k \delta \phi \]

\[\delta \mu = - \sum_k f_k \delta \phi \]

Torque \(\tau = \sum_k f_k \)

\[\tau_i = - \frac{\partial \mu}{\partial \phi_i} = \frac{d}{dt} M_i = \tau_i \]

\[\tau = \tau_1 + \tau_2 \]

The \(\tau = \tau_1 + \tau_2 + \tau_3 = \sum_k f_k \)

If \(\tau = 0 \) then torque is independent of the choice of the origin eg \(\tau = \tau_1 + \tau_2 + \tau_3 \)

If \(\tau \perp F \) then \(\tau = F \times \dot{\phi} \)

\[\Rightarrow \tau = \dot{\phi} \times F \]