\[\frac{\partial L}{\partial t} = \sum_{i} \frac{\partial \dot{u}}{\partial \dot{u}} \ddot{u} + \sum_{i} \frac{\partial \ddot{u}}{\partial \ddot{u}} \dddot{u} \]

\[= \sum_{i} \frac{\partial \ddot{u}}{\partial \ddot{u}} \dddot{u} + \sum_{i} \frac{\partial \dddot{u}}{\partial \dddot{u}} \ddot{u} \]

\[= \sum_{i} \frac{\partial \ddot{u}}{\partial \ddot{u}} \dddot{u} \]

\[\Rightarrow \frac{\partial L}{\partial t} - \sum_{i} \frac{\partial \ddot{u}}{\partial \ddot{u}} \dddot{u} = 0 \]

\[\text{Energy} \quad E = \sum_{i} \frac{\partial \ddot{u}}{\partial \ddot{u}} \dddot{u} - T \]

\[\text{Conservative systems: mechanical systems} \]

\[\text{for which the energy is conserved} \]

\[L = T - U \]

\[T \text{ is a quadratic function of velocity} \]

\[\Rightarrow \sum_{i} \ddot{u} \frac{\partial L}{\partial \ddot{u}} = \sum_{i} \ddot{u} \frac{\partial T}{\partial \ddot{u}} = 2T \]

\[\Rightarrow E = 2T - T + U = T + U \]

\[\text{of cartesian} \quad E = \sum_{i} \frac{1}{2} m \dot{x}^2 + U(q_1, q_2) \]