\[Q = \cos q \left(1 + \sqrt{q} \cos \rho \right) \]
\[P = 2 \left(1 + \sqrt{q} \cos \rho \right) q^{1/2} \sin \rho \]

a) With problem 12 we only have to show that:

\[\begin{vmatrix} P & Q \end{vmatrix}_{q, \rho} = 1 \]

\[\left(-2 \sqrt{q} \sin \rho \frac{\sqrt{q}}{2} + 2 \left(1 + q^{1/2} \cos \rho \right) q^{1/2} \cos \rho \right) \frac{1 - \sqrt{q} \cos \rho}{1 + q^{1/2} \cos \rho} \]

\[= -q^{1/2} \sin \rho \left(\sqrt{q} \cos \rho + \frac{1}{2} \left(1 + q^{1/2} \cos \rho \right) q^{-1/2} \sin \rho \right) \]

\[= \frac{\left(1 + q^{1/2} \cos \rho \right) \left(\cos^2 \rho + \sin^2 \rho \right)}{1 + q^{1/2} \cos \rho} = 1 \quad \text{o.k.} \]

b) Generating functional:

\[F_2 = - (e^{-Q} - 1)^2 \tan \rho \]

\[F_2(Q, P) \Rightarrow P = -\frac{\partial F_2}{\partial Q} \quad q = \frac{\partial F_5}{\partial P} \]

\[\Rightarrow P = 2 e^Q \]

\[q = + \sqrt{Q - 1} \]

\[\Rightarrow Q = \sqrt{\sqrt{Q - 1}} \cos \rho \]

\[\Rightarrow Q = \log (1 + \sqrt{q} \cos \rho) \]

\[P = 2 \left(1 + \sqrt{q} \cos \rho \right) \tan \rho \sqrt{q} \cos \rho \]

\[= 2 \left(1 + \sqrt{q} \cos \rho \right) \sqrt{q} \sin \rho \]

\[\begin{array}{c}
\text{Legendre transform}
\end{array} \]

\[F_5 = F(Q, Q) - P Q \]